The integrated intensities were obtained by a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) peak-profile analysis procedure, and corrected for Lorentz and polarization effects, but not for absorption.

The structure was solved by direct methods and refined on F^2 by anisotropic full-matrix least squares. The H atoms were placed in calculated positions, riding on the attached atoms; four isotropic U(H) parameters, constrained to be equal for chemically equivalent H atoms, were refined, as were the orientation and C—H distance for each of the three methyl groups. H3O was found in a $\Delta \rho$ synthesis out of the plane of the parent CO₂ group and was not subsequently refined. An independent refinement on F with SHELX76 (Sheldrick, 1976) using 1223 observed $[I > 2\sigma(I)]$ reflections and 194 parameters gave results essentially equal to those reported here.

The anomalous scattering effects did not give unequivocally the absolute configuration of the molecule, the value of the Flack (1983) index being x = 0.4 (3). The configuration was assigned on the basis of the known chiralities of the menthyl C atoms in (1).

The calculations were carried out on the ENCORE91 and GOULD-POWERNODE 6040 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma), and on a COMPAQ-486*c* portable computer.

Data collection: local programs. Cell refinement: LQPARM (Nardelli & Mangia, 1984). Data reduction: local programs. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEP (Johnson, 1965); PLUTO (Motherwell & Clegg, 1976). Geometrical calculations and preparation of the material for publication: PARST (Nardelli, 1983); PARSTCIF (Nardelli, 1991).

Financial support from MURST is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and difference-energy profiles have been deposited with the IUCr (Reference: MU1174). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Autodesk, Inc. (1992). HYPERCHEM. Version 2.0. Autodesk, Inc., 2320 Marinship Way, Sansalito, CA 94965, USA.
- Belletti, D., Ugozzoli, F., Cantoni, A. & Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dunitz, J. D. & White, D. N. J. (1973). Acta Cryst. A29, 93-94.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-589. Motherwell, W. D. S. & Clegg, W. (1976). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Nardelli, M. (1988). ROTENER. Program for Calculating Non-Bonded Potential Energy. Univ. of Parma, Italy.
- Nardelli, M. (1991). PARSTCIF. Program for Creating a CIF from the Output of PARST. Univ. of Parma, Italy.

Nardelli, M. & Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174. Saba, A. (1994). Synth. Commun. 24, 695-699.

Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.

- Serena Software, (1989). *PCMODEL*. Version 4.0. Serena Software, Bloomington, IN 47402-3076, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Trueblood, K. N. (1984). THMV. Program for Thermal Motion Analysis. Univ. of California, Los Angeles, USA.

Acta Cryst. (1995). C51, 2169-2171

5a-p-Methylphenyl-5a,5b,6,7,8,9,9a,10-octahydro-5*H*-isoindolo[2,1-*a*]benzimidazol-10one

REIJO SILLANPÄÄ

University of Turku, Department of Chemistry, FIN-20500 Turku, Finland

FERENC CSENDE AND GÉZA STÁJER

Institute of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, Szeged, POB 121, H-6701 Szeged, Hungary

(Received 3 January 1995; accepted 4 May 1995)

Abstract

The title compound, $C_{21}H_{22}N_2O$, was prepared by the reaction of *cis*-2-(4-methylbenzoyl)cyclohexanecarboxylic acid and *o*-phenylenediamine. A mixture of two isomeric compounds was isolated and separated by column chromatography. The compounds differ in the cyclohexane-pyrrolidone annelation, which is *cis* in the title compound. The mutual arrangement of the aryl group and the annelation H atoms is also *cis*.

Comment

For the synthesis of potential anorectic compounds a great number of saturated or partly saturated isoindolone derivatives have been prepared (Stájer, Csende, Bernáth, Sohár & Szúnyog, 1994; Stájer, Csende, Bernáth &

Sohár, 1994). As the configurations of the starting aroylcycloalkane carboxylic acids often change, depending on the reaction conditions, the structures of the products have to be established in each case (Stájer, Sillanpää & Pihlaja, 1993; Sillanpää, Stájer & Pihlaja, 1994). Similar aromatic analogues exhibit no isomers (Aeberli, Eden, Gogerty, Houlihan & Penberthy, 1975; Houlihan, 1974), but in the saturated analogues the mutual positions of the aryl group and annelation H atoms can differ. Difficulties may arise when the signals in the NMR spectra merge; this sometimes necessitates X-ray structure elucidation.

The title compound was prepared by the reaction of cis-2-(4-methylbenzoyl)cyclohexanecarboxylic acid, (1), and o-phenylenediamine, (2). A mixture of two isomeric compounds, (3) and (4), was isolated and separated by column chromatography. Compounds (3) and (4) differ in the cyclohexane-pyrrolidone annelation, which is *trans* for (3) [shown by NMR (Stájer, Csende, Bernáth & Sohár, 1994)] and *cis* for (4), as shown by the present X-ray structure determination.

A perspective view of molecule (4) (Fig. 1) shows that the aryl group and the annelation H atoms, H5b and H9a, are *cis* relative to the pyrrolidone ring, which has an envelope conformation with an out-of-plane C9a atom. The geometric parameters (Table 2) do not have any unusual values. The N5—H5…O1($\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{3}{2} - z$) hydrogen bond stabilizes the structure in the solid state [N5…O1 2.937 (4) Å and N5—H5…O1 168 (3)°].

The cyclohexane ring has a chair conformation and each five-membered ring an envelope conformation (see torsion angle values in Table 2). On comparison with compound (3), which contains a *trans*-condensed saturated isoindolone moiety [the *cis* configuration of the starting compound (1) changes during the reaction], (4) retains the original *cis* configuration of the starting compound (1); this is unusual because *cis*-*trans* isomerization has been found for similar reactions in many other cases (*cf.* Stájer, Csende, Bernáth & Sohár, 1994). Previous results show that *trans*-condensed pyrrolidine-

Fig. 1. Structure of compound (4) showing displacement ellipsoids at the 30% propability level, except for those of H atoms, which represent an isotropic displacement factor of 1.0 Å^2 .

cyclohexane ring fusion is advantageous for analogous tetracyclic compounds.

Experimental

A mixture of (1) (6.15 g, 25 mmol), (2) (2.70 g, 25 mmol) and solid *p*-toluenesulfonic acid (*ca* 10 mg) in dry toluene (50 ml) was refluxed for 3 h using a water separator. After removal of the solvent, the residue was purified by column chromatography (silica gel, benzene, monitoring by TLC). The early fractions contained compound (4) (1.5 g, 25% yield) and the later ones compound (3) (1.76 g, 29%). Data for compound (3), together with the structure elucidation by NMR (m.p. 461–463 K), have been published elsewhere (Stájer, Csende, Bernáth & Sohár, 1994). Compound (4) (m.p. 491–492 K) was recrystallized from ethanol.

Crystal data

$C_{21}H_{22}N_2O$	Mo $K\alpha$ radiation
$M_r = 318.41$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 9.845(3) Å	$\theta = 20.0 - 23.6^{\circ}$
h = 12.445(2) Å	$\mu = 0.076 \text{ mm}^{-1}$
c = 14.0154(13) Å	T = 293 (2) K
$\beta = 92.154 (12)^{\circ}$	Prism
V = 1716.0 (6) Å ³	$0.32 \times 0.26 \times 0.22$ mm
Z = 4	Colourless
$\overline{D}_{r} = 1.232 \text{ Mg m}^{-3}$	

Data collection		C11a-N11-C5a	109.9 (2)	C5a
	1401 absorbed reflections	Clla—Cl—C2	116.9 (5)	C10
Rigaku AFC-55 diffractom-	1401 observed reflections	C3C4C4a	118.2 (5)	C10
eter	$[I > 2\sigma(I)]$	N5-C4a-C4	131.0 (4)	C9-
$\omega/2\theta$ scans	$R_{\rm int} = 0.038$	N5-C4a-C11a	109.7 (3)	01-
Absorption correction:	$\theta_{\rm max} = 24.98^{\circ}$	C4C4aC11a	119.2 (4)	01-
where a server of the server o	$h = 0 \rightarrow 10$	N5-C5a-N11	100.6 (2)	NII
ψ scans (Norm, Finnes	$h = 0 \rightarrow 10$	N5-C5a-C12	111.3 (2)	CI-
& Mathews, 1968)	$k = 0 \rightarrow 14$	N11-C5a-C12	111.1 (2)	CI-
$T_{\min} = 0.975, T_{\max} =$	$l = -16 \rightarrow 16$	N5-C5a-C5b	116.4 (2)	C4a
1.000	3 standard reflections	N11-C5a-C5b	101.4 (2)	
2712 measured reflections	monitored every 150	C6-C5b-C9a-C10	81.7 (3)	C9a
2712 measured reneetions	reflections	C5a—C5b—C9a—C9	164.0 (3)	C5t
2381 independent reflections	renections	C11a-N11-C10-01	-28.1 (5)	C6-
	intensity decay: none	C5a—N11—C10—O1	-174.1 (3)	C7-
		C5b-C9a-C10-01	151.8 (3)	C8-
Refinement		C9-C9a-C10-01	25.2 (5)	C6-
3		C5a—N5—C4a—C11a	-12.0 (3)	NI
Refinement on F^2	Extinction correction:	C4a—N5—C5a—N11	15.6 (3)	C5a
R(F) = 0.0441	SHELXL93 (Sheldrick,	Clla—Nll—C5a—N5	-14.0(3)	050
$wR(F^2) = 0.1164$	1993)	C5a-NII-CIIa-C4a	7.9(3)	C58
S = 1.025	Extinction coefficient:	N5-C4a-C11a-N11	2.4 (3)	CI
3 = 1.023	0.0079 (12)	XX advance for	und from	٨.
2381 reflections	0.0078(12)	H atoms were to	und from	$\Delta \rho$
294 parameters	Atomic scattering factors	with isotropic displ	acement pa	rame
$w = 1/[\sigma^2(F_o^2) + (0.0272P)^2]$	from International Tables	H atoms, which w	vere includ	ed ii
+ 0.3430P1	for Crystallography (1992,	fixed displacement	parameter	s (1.
where $P = (F^2 + 2F^2)/3$	Vol. C. Tables 4.2.6.8 and	parameter of the ho	st atom) a	nd C-
(A/-) = 0.001	6114)	Data collection:	FEXSAN (N	/olec
$(\Delta/\sigma)_{\text{max}} = -0.001$	0.1.1.+/		anti TEVC	ANT /N
$\Delta \rho_{\rm max} = 0.161 \ {\rm e \ A}^{-3}$		1989). Cell rennem	ent. TEAS	12 V (I 77 C)
$\Delta \rho_{\rm min} = -0.134 \ {\rm e} \ {\rm A}^{-3}$		ration, 1989). Data	reduction	: TE

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	ν	z	U_{eq}
01	0.4243 (2)	0.9631 (2)	0.8061 (2)	0.0792 (8)
N5	0.2288 (3)	0.6656 (2)	0.6983 (2)	0.0537 (8)
NII	0.3778 (2)	0.7956 (2)	0.7456 (2)	0.0479 (7)
Cl	0.3813 (4)	0.8902 (4)	0.5851 (4)	0.0753 (12)
C2	0.3271 (6)	0.8844 (5)	0.4924 (4)	0.098 (2)
C3	0.2420 (6)	0.8035 (6)	0.4650 (4)	0.101 (2)
C4	0.2047 (4)	0.7236 (4)	0.5271 (3)	0.0737 (12)
C4a	0.2553 (3)	0.7282 (3)	0.6204 (2)	0.0530 (9)
C5a	0.3231 (3)	0.6917 (2)	0.7783 (2)	0.0444 (8)
C5b	0.2588 (3)	0.7249 (3)	0.8723 (2)	0.0497 (9)
C6	0.1160 (3)	0.7696 (4)	0.8577 (3)	0.0614 (10)
C 7	0.0705 (4)	0.8325 (4)	0.9443 (3)	0.0720 (12)
C8	0.1648 (4)	0.9262 (3)	0.9654 (3)	0.0682 (11)
C9	0.3087 (4)	0.8862 (4)	0.9871 (3)	0.0755 (12)
C9a	0.3585 (3)	0.8125 (3)	0.9085 (3)	0.0568 (9)
C10	0.3912 (3)	0.8690 (3)	0.8167 (3)	0.0574 (9)
Clla	0.3438 (3)	0.8105 (3)	0.6474 (2)	0.0530 (9)
C12	0.4355 (3)	0.6077 (2)	0.7894 (2)	0.0432 (8)
C13	0.5488 (3)	0.6115 (3)	0.7334 (2)	0.0541 (9)
C14	0.6468 (4)	0.5321 (3)	0.7389 (3)	0.0611 (10)
C15	0.6370 (3)	0.4462 (3)	0.7994 (2)	0.0565 (9)
C16	0.5258 (4)	0.4419 (3)	0.8549 (3)	0.0679 (11)
C17	0.4262 (4)	0.5211 (3)	0.8504 (3)	0.0634 (10)
C18	0.7430 (4)	0.3580 (3)	0.8035 (3)	0.0889 (13)

Table 2. Selected geometric parameters (Å, °)

01C10	1.226 (4)	C1C11a	1.382 (5)
N5C4a	1.374 (4)	C4C4a	1.382 (5)
N5C5a	1.465 (4)	C4aC11a	1.388 (4)
N11C10	1.354 (4)	C5aC12	1.527 (4)
N11C11a	1.416 (4)	C5bC9a	1.540 (4)
N11C5a	1.480 (3)	C9aC10	1.512 (5)
C4a—N5—C5a	110.4 (3)	C12—C5a—C5b	114.6 (2)
C10—N11—C11a	129.8 (3)	C6—C5b—C5a	113.0 (3)
C10—N11—C5a	112.8 (3)	C6—C5b—C9a	111.1 (3)

C11a-N11-C5a	109.9 (2)	C5a-C5b-C9a	101.2 (2)
C11a-C1-C2	116.9 (5)	C10C9aC9	114.8 (3)
C3-C4-C4a	118.2 (5)	C10-C9a-C5b	101.7 (3)
N5-C4a-C4	131.0 (4)	C9C9aC5b	116.4 (3)
N5-C4a-C11a	109.7 (3)	O1-C10-N11	125.0 (3)
C4-C4a-C11a	119.2 (4)	O1-C10-C9a	127.8 (3)
N5-C5a-N11	100.6 (2)	N11-C10-C9a	107.2 (3)
N5-C5a-C12	111.3 (2)	C1-C11a-C4a	122.5 (4)
N11-C5a-C12	111.1 (2)	C1-C11a-N11	130.5 (4)
N5—C5a—C5b	116.4 (2)	C4a-C11a-N11	106.9 (3)
N11-C5a-C5b	101.4 (2)		
C6-C5b-C9a-C10		C9a-C5b-C6-C7	-49.6 (4)
C5a-C5b-C9a-C9	164.0 (3)	C5b-C6-C7-C8	59.7 (5)
C11a-N11-C10-01	-28.1 (5)	C6-C7-C8-C9	-60.6 (5)
C5a-N11-C10-01	-174.1 (3)	C7-C8-C9-C9a	53.1 (5)
C5b-C9a-C10-01	151.8 (3)	C8—C9—C9a—C5b	-46.0 (5)
C9C9a-C10O1	25.2 (5)	C6-C5b-C9a-C9	43.8 (4)
C5a-N5-C4a-C11a	-12.0 (3)	N11—C5a—C5b—C9a	-34.8 (3)
C4a—N5—C5a—N11	15.6 (3)	C5a-C5b-C9a-C10	38.6 (3)
C11a—N11—C5a—N5	-14.0 (3)	C5b-C9a-C10-N11	-28.5 (3)
C5a-N11-C11a-C4a	7.9 (3)	C5a—N11—C10—C9a	6.1 (3)
N5-C4a-C11a-N11	2.4 (3)	C10-N11-C5a-C5b	18.9 (3)

maps and were refined eters, except for the methyl n idealized positions with 2 times the displacement —H distances of 0.96 Å.

cular Structure Corporation, Molecular Structure Corporation, 1989). Data reduction: TEXSAN. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1256). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Aeberli, P., Eden, P., Gogerty, J. H., Houlihan, W. J. & Penberthy, C. (1975). J. Med. Chem. 18, 177-185.
- Houlihan, W. J. (1974). German Patent 1 795 758 [Chem. Abstr. (1975), 82, 31322d]; US Patent 3910947 [Chem. Abstr. (1976), 84, 55058p].
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Sillanpää, R., Stájer, G. & Pihlaja, K. (1994). Acta Chem. Scand. 48, 84-87.
- Stájer, G., Csende, F., Bernáth, G. & Sohár, P. (1994). Heterocycles, 37, 883-890.
- Stájer, G., Csende, F., Bernáth, G., Sohár, P. & Szúnyog, J. (1994). Monatsh. Chem. 125, 933-944.
- Stájer, G., Sillanpää, R. & Pihlaja, K. (1993). Acta Chem. Scand. 47, 482-485.